Integrative network based analysis of metabolomic and transcriptomic data for understanding biological mechanism of lung cancer

Christopher Wilson, PhD

Research Fellow, Moffitt Cancer Center

Moffitt Cancer Center

February 28, 2020

- Lung cancer is the leading cause of cancer deaths worldwide.
- Common therapy for lung cancer includes surgery, radiation, chemotherapy, and immunotherapy, which are debilitating to the patient can be harmful to healthy surrounding tissue.
- Moreover, immunotherapy has been found to improve the outcome of a small subset of lung cancers.
- There is a need for further understanding of the basic biology to develop targeted therapies for lung cancers.

- There were 18 mice which comprised 5 knockout groups (p53, DN-p63, TA-p63, DN-p73, TA-p73) and wild type (WT).
- Gene expression and metabolite abundance was measured for each of these mice.
- The following quality control was performed on the gene expression data:
 - Poorly expressed genes were removed resulting 15192 genes.
 - 2 VOOM transformation

- The following quality control was performed on the metabolomic abundance data (366 metabolites):
 - Log2 transform
 - Averaged technical replicates
 - Imputed missing data with KNN
 - Pareto scaling

Trends in Biotechnology

э

A D N A B N A B N A B N

Our Integrative Approach

Christopher Wilson, PhD (MCC)

Integrative Network Analysis

February 28, 2020 5 / 18

э

- Modules are groups of genes or metabolites with similar expression profiles.
- Network based module detection using sparse Gaussian Graphical Models (GGMs).
- Hierarchical clustering on the Topographical Overlap Measure (TOM).
- Use first principal component to summarize each module.
- Association analysis is conducted between module and phenotype, and data types.
- Benefits to Weighted Gene Coexpression Network Analysis (WGCNA):
 - Direct association between elements
 - Sparse network representation
 - Reduces amount of multiple testing (General benefit of clustering)

• Topographical overlap (*TOM_{ij}*) is computed by the following formula:

$$TOM_{ij} = \frac{\sum_{u} a_{iu}a_{uj} + a_{ij}}{\min(k_i, k_j) + 1 - a_{ij}} = \frac{|N(i) \cap N(j)| + a_{ij}}{\min(|N(i)|, |N(j)| + 1 - a_{ij})},$$

where

- a_{ij} strength of the connection between node i and j
- k_i is the connectivity of node i, $k_i = \sum_u a_{iu}$
- RHS is a special case for unweighted adjacency matrix
- *N*(*i*) is the neighbor set of node *i*

Example Network

• Consider nodes 1 and 2. $N(1) = \{2, 4\}$ and $N(2) = \{1, 3\}$, thus $k_1 = 2 = k_2$ and $|N(1) \cap N(2)| = 0$.

$$TOM_{12} = \frac{|N(1) \cap N(2)| + a_{12}}{\min(|N(1)|, |N(2)|) + 1 - a_{12}} = \frac{0+1}{2+1-1} = \frac{1}{2}$$

Example Network

• Consider nodes 1 and 2. $N(1) = \{2, 4\}$ and $N(2) = \{1, 3\}$, thus $k_1 = 2 = k_2$ and $|N(1) \cap N(2)| = 0$. $|N(1) \cap N(2)| + a_{12} = 0 + 1 = 1$

$$TOM_{12} = \frac{|N(1) \cap N(2)| + a_{12}}{\min(|N(1)|, |N(2)|) + 1 - a_{12}} = \frac{0+1}{2+1-1} = \frac{1}{2}$$

• Consider nodes 5 and 6. $N(5) = \{4\}$ and $N(6) = \{4\}$, thus $k_5 = 1 = k_6$ and $|N(5) \cap N(6)| = 1$.

$$TOM_{56} = \frac{|N(5) \cap N(6)| + a_{56}}{\min(|N(5)|, |N(6)|) + 1 - a_{56}} = \frac{1+0}{1+1-0} = \frac{1}{2}$$

• Consider nodes 4 and 5. $N(4) = \{1, 3, 5, 6\}$ and $N(5) = \{4\}$, thus $k_4 = 4$, $k_5 = 1$ and $|N(1) \cap N(2)| = 0$.

$$TOM_{45} = \frac{|N(4) \cap N(5)| + a_{45}}{\min(|N(4)|, |N(5)|) + 1 - a_{45}} = \frac{0+1}{1+1-1} = \frac{1}{1}$$

Christopher Wilson, PhD (MCC)

Example Network

Heirachical Clustering of Example Network

Christopher Wilson, PhD (MCC)

Integrative Network Analysis

- Gaussian graphical models are networks constructed using conditional dependency.
- Edges between two elements are missing iff they conditionally independent.
- Partial correlation between two genes can be computed by
 - inverting the correlation matrix, or
 - calculating the correlation after adjusting each gene for all other genes

$$egin{aligned} \hat{eta}^{(i)} &= \arg\min_{eta \in \mathbb{R}^{p-1}} ||X^{(i)} - X^{(-i)}eta||^2, ext{ and } \ \hat{
ho}_{ij} &= \operatorname{sign}(eta_j^{(i)})\sqrt{\hat{eta}_i^{(j)}\hat{eta}_j^{(i)}}, \end{aligned}$$

- The parcor package in R is a tool that allows you to estimate partial correlation
- Additionally, different penalty terms can be used, specifically the ℓ_1 can be enforced to induce a sparse GGM.
- parcor allows for cross validation to select the shrinkage parameter.

	Mean	Median	Max	Average Module
	Connectivity	Connectivity	Connectivity	Size
WGCNA (Genes)	7.35	4.88	30.91	56.90
Proposed Method (Genes)	3.068	3	10	42.80
WGCNA (Metabolites)	167.18	125.56	771.86	27.77
Proposed Method (Metabolites)	3.45	3	8	21.24

Table: Summary of network properties

э

< □ > < 同 >

	Number of Number of		TAp63 v.
	Modules	Significant (p<0.1)	WT
WGCNA	265	23	7
Proposed Method	355	31	10

Table: Summary of gene module analysis

	Number of Number of		TAp63 v.
	Modules	Significant (p<0.1)	WT
WGCNA	13	1	1
Proposed Method	17	2	2

Table: Summary of metabolite module analysis

Christopher Wilson, PhD (MCC)

Integrative Network Analysis

February 28, 2020 14 / 18

Number of		Number of	Number of
	Genes Modules	Metabolite Modules	Significant Interactions
WGCNA	7	1	(<mark>0</mark> ,0)
Proposed Method	17	2	(<mark>0</mark> ,0)

Table: Summary of integrative analysis, red indicates gene and blue indicates metabolites.

Discussion

- Module detection can greatly reduce the burden of multiple testing and can allow for a potentially better biological understanding.
- Using partial correlation to compute TOM provides more and smaller modules than using direct and indirect association.
- Integrating multiple data types can lead to a much broader understanding of systems biology.
- Future Work
 - Study the underlying network properties more. (Does scale-free matter?)
 - Conduct simulation study to observe the network properties of WGCNA and our proposed method.
 - Develop method to allow elements to be assigned to multiple modules.
 - Investigate how to identify hubs

Paul Stewart, PhD

• I would also like to thank Elsa Flores for allowing me to use her data for this presentation.

Thank you!

- ∢ ⊒ →

æ