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Prediction Models

Binary outcome variable Y.

Baseline covariates X.

A prediction model is an equation or algorithm that gives P(Y = 1|X )

Three different settings
I Building a new model
I Applying an existing model
I Evaluating an existing model
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Different settings for using prediction models

Three different settings
I Build a new model, have data (Yi ,Xi ), i=1,...,N
I Apply an existing model to an individual, have data (X), for one subject
I Evaluating an existing model, have new data (Yi ,Xi), i=1,...,N
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Main Goal

The assessment of an existing prediction models when the data have
missing covariate values.

Metrics for assessing predictions models
I Discrimination - AUC = area under the ROC curve.
I Calibration - Brier score (BS) = MSE of predicted probabilities.

Question, how to estimate AUC and BS when there are missing X’s? .
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Methods for handling missing data

Two general methods for analyzing datasets with missing values.
I Multiple imputation (MI).
I Inverse Probability Weighting (IPW).

Both MI and IPW involve models
I A model for the value of the missing variable
I A model for the probability of missingness

Question, Should these models involve Y?

How do MI and IPW based methods compare with simply throwing
away any observations with missing X’s, i.e. Complete Case analysis?
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Should Y be included in the imputation model?

In general for multiple imputation it is well known that the outcome
should be included as a covariates when imputing missing X’s.

When building a new prediction model Moons et al (2008) showed
that the outcome variable should be included in the multiple
imputation approach.

People are suspicious of this and don’t want to believe it.
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Comparing MI and IPW

How do MI, IPW and Augmented IPW (AIPW) compare in terms of:
I Bias
I Efficiency
I Robustness to model mispecification
I Reason for missingness:

F missing complete at random (MCAR),
F missing at random (MAR),
F Missing Not at Random (MNAR).

The ideal estimators is - what the estimate would be if there were no
missing data
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AUC and BS will likely differ between studies

Loosely speaking, a prediction model is said to be ”validated” if a
new dataset gives a similar AUC and BS as the original study.

AUC and BS can differ between studies because
I Because the distributions of [Y |X ] differ between the populations
I or because the distribution of [X ] differs between the populations
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Prostate cancer example

The Cancer of the Prostate Risk Assessment (CAPRA) score
published in 2005 as external model.
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Details of the CAPRA score

Table: CAPRA score

Variable Level Points

PSA

2.0-6 0
6.1-10 1
10.1-20 2
20.1-30 3
>30 4

Gleason Score
(Primary/Secondary)

1-3/1-3 0
1-3/4-5 1
4-5/1-5 3

T stage
T1/T2 0
T3a 1

Percent positive biopsy
<34% 0
≥ 34% 1

Age
<50 0
≥50 1
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Prostate cancer example

Patients from Mayo Clinic 2008-2012 (n=1268), 90% missing in
Percent positive biopsy.

Use 3-year PFS as binary outcome. Compare outcome vs CAPRA
score to get AUC. Compare outcome vs CAPRA rate for each score to
get Brier score.

Use PSA, Gleason Score, T-stage, Age (and outcome) to build the
weight model and/or imputation model in IPW, AIPW and MI.
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CAPRA score distribution and predicted probabilities

Table: Patient distribution and Kaplan-Meier analysis for the CAPRA database
(n=1439)

CAPRA Score % Patients 3-Yr % RFS(95%CI)

0-1 27.9 91(85-95)

2 30.0 89(83-94)

3 20.6 81(73-87)

4 10.8 81(69-89)

5 5.8 69(51-82)

6 3.0 54(27-75)

7 or Greater 2.0 24(9-43)
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Estimates of AUC and BS

Figure: Varying estimates of AUC and Brier Scores for Prostate Cancer example,
based on how missing data are handled

Different estimates of AUC and BS, depending on which method is used.
Which is best?
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Definition of Brier Score

A model was built from external data.

FE (X ) and FE (Y |X ) denote the true distributions for the external
data

The existing model p̂(Y = 1|X ) is an approximation to FE (Y |X ).

FI (X ) and FI (Y |X ) denote the true distributions for the internal data

dataset of size N , binary outcome Y and p-dimensional vector of
covariates X

The BS is given by

BS =
N∑
i=1

(Yi − p̂i )
2/N (2.1)

Given the distribution of FI (X ) and FI (Y |X ),

TrueBrierI (p̂) =
∑
Y

∫
X

(Y − p̂)2FI (Y |X )FI (X )dX (2.2)
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Definition of AUC and C-index

The Area Under the Curve (AUC), which is equivalent to the
Concordance-index (C-index) for a binary outcome, is estimated using

AUC/C − index =

N∑
i=1

N∑
j=1

I (βXi > βXj)I (Yi > Yj)

N∑
i=1

N∑
j=1

I (Yi > Yj)

(2.3)

Let X1 denote the covariates in cases and X0 denote the covariates in
controls. Their distributions are FI (X1) = FI (X |Y = 1) and
FI (X0) = FI (X |Y = 0), respectively.

TrueAUCI (p̂) =

∫
X1

∫
X0

I (βX1 > βX0)FI (X1)FI (X0)dX1dX0 (2.4)
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Method

Some X values are missing in the internal data.

ID X1 X2 X3 Y R

1 4 2 -2 1 1

2 NA -2 1 0 0

3 NA -3 2 1 0

4 2 -3 4 1 1

...

How do we get good estimates of TrueBrierI (p̂) and TrueAUCI (p̂) ?
- Small bias, low variability, robust to model misspecification.
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Complete case analysis

Using only complete case (i.e Ri = 1) the simplest estimates are

BSCC =

N∑
i=1

(Yi − p̂i )
2Ri∑N

i=1 Ri

(2.5)

C − indexCC =

N∑
i=1

N∑
j=1

I (βXi > βXj)I (Yi > Yj)RiRj

N∑
i=1

N∑
j=1

I (Yi > Yj)RiRj

(2.6)

However, these estimates may be biased in MAR and MNAR settings and
may lack efficiency in MCAR situations.
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Multiple Imputation

Build imputation models: F (Xmis |Xobs ,Y ) or for F (Xmis |Xobs)

Draw a value of Xmis from the model, then apply the external model
on the imputed complete data to get the predictions of Y and
calculate BS and AUC

Repeat 2nd step for M times (M=5), average the predicted BS and
AUC from the multiple imputed datasets using Rubin’s rule

When there is more than one covariate with missing values, a chained
equation approach is used to impute the missing values sequentially
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Inverse Probability Weighting

The weight (Wi ) is the inverse probabilty of observation i being complete
(Ri = 1), i.e. Wi = 1/Pr(Ri = 1).
Build the weight model of either Pr(Ri = 1|Xi ,Yi ) or Pr(Ri = 1|Xi ) by
logistic regression.

BSIPW =

N∑
i=1

(Yi − p̂i )
2RiWi

N∑
i=1

RiWi

(2.7)

C − indexIPW =

N∑
i=1

N∑
j=1

I (βXi > βXj)I (Yi > Yj)RiWiRjWj

N∑
i=1

N∑
j=1

I (Yi > Yj)RiWiRjWj

(2.8)
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Augmented Inverse Probability Weighting

Augmented Inverse Probability Weighting (AIPW) also include information
from subjects with missing data.

Predicted mean X ∗, i.e., E (Xmis |Xobs ,Y ) or E (Xmis |Xobs), from
imputation model, created for all subjects

Weight Wi from weight model

BSAIPW =

N∑
i=1

(Yi − p̂i )
2RiWi + (Yi − p̂i

∗)2(1− RiWi )

N
(2.9)

- Missing subject Ri = 0: (Yi − p̂i
∗)2.

- Complete subject Ri = 1: (Yi − p̂i )
2Wi + (Yi − p̂i

∗)2(1−Wi ).
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Augmented Inverse Probability Weighting

For C-index,

C−indexAIPW =

N∑
i=1

N∑
j=1

I (Yi > Yj )
{
I (βXi > βXj )RiWiRjWj + I (βX∗

i > βX∗
j )(1 − RiWiRjWj )

}
N∑
i=1

N∑
j=1

I (Yi > Yj )

(2.10)
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Consistency of AIPW estimators

Double robustness property of AIPW method.

If either the weight model or the model for missing X is correctly specified
then the AIPW estimators are consistent.
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Simulation

logit(Pr(Y = 1)) = 0.25 + 0.7X1 + 0.6X2 − 0.5X3

X1,X2,X3 are sampled from N(0, 1) and about 40% of X1 is missing. The
covariates can be independent, or correlated with cor(X1,X3) = −0.5.

Simulation results of mean and relative SD of AUC and BS from 1000
iterations.
MCAR: Pr(X1 is missing)=0.4.
MAR(X2,X3): Pr(X1 is missing)= invlogit(−0.5 + 2X2 − 2X3).
MAR(X2,Y ): Pr(X1 is missing)= invlogit(−0.5 + 2X2 + Y ).
MNAR(X1): Pr(X1 is missing)= invlogit(−0.5 + 3X1).

23 / 33



Simulation

We compared the validation of external models on full internal data:

True: true value based on internal data distribution

Full: data without missing (target value)

CC: complete cases anaylsis

IPW1: weight model uses X

IPW2: weight model uses X & Y

MI1: imputation model uses X

MI2: imputation model uses X & Y

AIPW1: weight model uses X , imputation model uses X

AIPW2: weight model uses X & Y , imputation model uses X

AIPW3: weight model uses X , imputation model uses X & Y

AIPW4: weight model uses X & Y , imputation model uses X & Y
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Simulation results - AUC

*The model used to impute the missing X in MI2 and create X∗ in AIPW3 and AIPW4 is

slightly misspecified.
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Simulation results - Brier Score
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Summary of Simulation Results

When there are missing observations in the internal data, MI and
IPW can be used to get unbiased BS and AUC if the imputation
model or weight model is correctly specified.

AIPW can improve the efficiency of IPW, and also get the double
robustness from mis-specification of weight model or imputing model.

MI can be more efficient than IPW and AIPW

The outcome variable should be included in the multiple imputation
under all scenarios.

If IPW or AIPW methods are used and missingness does not depend
on Y, then it does not appear to be necessary to include Y in either
the weight model or the missing variable model.
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Data analysis

The Cancer of the Prostate Risk Assessment (CAPRA) score
published in 2005 as external model.

Patients from Mayo Clinic 2008-2012 (n=1268), 90% missing in
Percent positive biopsy.

Use 3-year PFS as binary outcome. Compare outcome vs CAPRA
score to get AUC. Compare outcome vs CAPRA rate for each score to
get Brier score.

Use PSA, Gleason Score, T-stage, Age (and outcome) to build the
weight model and/or imputation model in IPW, AIPW, and MI.
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Data analysis

Table: CAPRA score

Variable Level Points

PSA

2.0-6 0
6.1-10 1
10.1-20 2
20.1-30 3
>30 4

Gleason Score
(Primary/Secondary)

1-3/1-3 0
1-3/4-5 1
4-5/1-5 3

T stage
T1/T2 0
T3a 1

Percent positive biopsy
<34% 0
≥ 34% 1

Age
<50 0
≥50 1

29 / 33



Data analysis

Table: Patient distribution and Kaplan-Meier analysis for the CAPRA database
(n=1439)

CAPRA Score % Patients 3-Yr % RFS(95%CI)

0-1 27.9 91(85-95)

2 30.0 89(83-94)

3 20.6 81(73-87)

4 10.8 81(69-89)

5 5.8 69(51-82)

6 3.0 54(27-75)

7 or Greater 2.0 24(9-43)
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Data analysis

Figure: Varying estimates of AUC and Brier Scores for Prostate Cancer example,
based on how missing data are handled

MI2 and AIPW4 are the best to use.
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Summary

The estimands for AUC and Brier Score do depend on the joint
distribution of X and Y

The approach to handle missing data can result in quite different
estimates.

For MI when there are missing observations you should include Y in
the model for imputing missing X’s.

For IPW methods when there are missing observations you should
include Y in the required models, unless missingness does not depend
on Y.

MI can be more efficient than IPW and AIPW
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