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Background of Gaussian Graphical Model

A graph with p nodes and edges between the p nodes could be
represented by G = (V ,E ), where V = {1, . . . ,p} is the nodes set
and E is a subset of the set V ×V .
Under multivariate Gaussian distribution, the elements of inverse
covariance matrix (or precision matrix) Ω indicate conditional
dependency between pairs of variables.
Specifically, if ωi ,j = 0, variables i and j are conditionally
independent, otherwise, they are dependent given all other
variables.
That is to say, ωi ,j = 0⇔ (i , j) and (j , i) /∈ E and ωi ,j 6= 0⇔ (i , j)
and (j , i) ∈ E
Therefore, Ω−→ E −→ Graph (i.e. Network).



Gaussian Graphical Model and Gene Network

ωij = 0 means Gi and Gj are conditionally independent
⇔ Gi and Gj are disconnected in the gene network
ωij 6= 0 means Gi and Gj are conditionally dependent
⇔ Gi and Gj are connected in the gene network



Gaussian Graphical Model and Gene Network

ω13 6= 0 ⇔ G1 and G3 are connected in the gene network



Gaussian Graphical Model and Gene Network

ω45 = 0 ⇔ G4 and G5 are disconnected in the gene network



Why two-level network analysis?

Definition: the two-level network analysis is a network based
analysis in terms of two layers, higher-level variables (e.g.,
pathways) and lower-level variables (e.g., genes).
People like to know how lower level variables interact within a
higher-level variable and how higher-level variables interact.

An Example of the Gene Network within a Pathway



Why two-level network analysis?

Definition: the two-level network analysis is a network based
analysis in terms of two layers, higher-level variables (e.g.,
pathways) and lower-level variables (e.g., genes).
People like to know how lower level variables interact within a
higher-level variable and how higher-level variables interact.

An Example of the Pathway Network



Why two-level network analysis?

Definition: the two-level network analysis is a network based
analysis in terms of two layers, higher-level variables (e.g.,
pathways) and lower-level variables (e.g., genes).
People like to know how lower level variables interact within a
higher-level variable and how higher-level variables interact.

An Example of the Two-level Network



Why joint estimation?

Biological systems are highly dynamic; we usually face observations
collected from different states. For instance, normal or diseased.
If we estimate the two-level network separately, common structures
are ignored. If we estimate them together, differences are masked.
Many works have been proposed to jointly estimate multiple
graphical models (Guo et al., 2011; Danaher et al., 2014; Shan and
Kim, 2018; Shan et al., 2019).
There are also papers that focus on inferring the differential
network directly (Yuan et al., 2017).



Joint Estimation of the Two-level Network

Common two-level network exists among heterogeneous classes.
Yet differences exist among heterogeneous classes in terms of the
defined two-level network.

(a) White Breast Cancer Patients (b) Non-White Breast Cancer Patients



The Two-level Gaussian Graphical Model

Settings:
The heterogeneous dataset has p variables and M classes (M > 2).
The p variables are in K pre-specified groups, denoted by
P1, . . . ,PK .
There are pk variables within the kth group Pk .
The mth class contains nm observations (xm

1 , . . . ,xm
nm ), where

xm
i = (xm

i ,1, . . . ,xm
i ,p) i = 1, . . . ,nm.

We have M nm×p matrices, where

Xm
nm×p =


xm

1,1 · · · xm
1,p

... . . . ...
xm

nm,1 · · · xm
nm,p

 =

 xm
1
...

xm
nm

m = 1, . . . ,M



The Two-level Gaussian Graphical Model

Assumptions:

1 Within each class m, xm
1 , . . . ,xm

nm ∈ Rp are i.i.d MN (0,(Ω(m))−1),
where

Ω(m) =


ω

(m)
1,1 · · · ω

(m)
1,p

... . . . ...
ω

(m)
p,1 · · · ω

(m)
p,p


is symmetric positive definite.

2 Observations from different classes are independent of each other.



The Two-level Gaussian Graphical Model

Ω(m)
kk tells us information on the lower-level network.

Ω(m)
kk′ tells us information on the higher-level network.

Ω(m) =


Ω(m)

11 Ω(m)
12 · · · Ω(m)

1K
Ω(m)

21 Ω(m)
22 · · · Ω(m)

2K
...

... . . . ...
Ω(m)

K1 Ω(m)
K2 · · · Ω(m)

KK





The Two-level Gaussian Graphical Model

Let the conditional dependency among variables in the kth and k ′th
groups in class m be written as a pk by pk′ sub-block precision matrix
Ω(m)

kk′ , which is

Ω(m)
kk′ =


ω

kk′(m)
1,1 ω

kk′(m)
1,2 · · · ω

kk′(m)
1,pk′

ω
kk′(m)
2,1 ω

kk′(m)
2,2 · · · ω

kk′(m)
2,pk′

...
... . . . ...

ω
kk′(m)
pk ,1 ω

kk′(m)
pk ,2 · · · ω

kk′(m)
pk ,pk′


For instance, ωkk′(m)

1,2 indicates the conditional dependency between gene
1 in pathway k and gene 2 in pathway k ′ for class m.



The Two-level Gaussian Graphical Model

Reparameterization within a class:

We reparameterize the sub-block precision matrix Ω(m)
kk′ by

introducing a higher level factor θ(m)
kk′ for the kth and k ′th groups in

class m.
The partial correlation between ith variable in the kth group and
jth variable in the k ′th group in class m can be written as
ω

kk′(m)
i ,j = θ

(m)
kk′ γ

kk′(m)
i ,j , where θ(m)

kk′ > 0, 1 6 k,k ′ 6 K .

The constraints are θ(m)
kk′ = θ

(m)
k′k , γkk′(m)

i ,j = γ
k′k(m)
j,i , and θ(m)

kk = 1
(i.e. ωkk(m)

i ,j = γ
kk(m)
i ,j ).



The Two-level Gaussian Graphical Model

Therefore, the precision matrix for class m is written as

Ω(m) =


Ω(m)

11 Ω(m)
12 · · · Ω(m)

1K
Ω(m)

21 Ω(m)
22 · · · Ω(m)

2K
...

... . . . ...
Ω(m)

K1 Ω(m)
K2 · · · Ω(m)

KK



=


θ

(m)
11 Γ(m)

11 θ
(m)
12 Γ(m)

12 · · · θ
(m)
1K Γ(m)

1K
θ

(m)
21 Γ(m)

21 θ
(m)
22 Γ(m)

22 · · · θ
(m)
2K Γ(m)

2K
...

... . . . ...
θ

(m)
K1 Γ(m)

K1 θ
(m)
K2 Γ(m)

K2 · · · θ
(m)
KK Γ(m)

KK





The Joint Estimation Method

Reparameterization across classes:

We assume the two-level networks across classes share some
common structure, which is composed of the higher-level network
and the lower-level network.
That is to say, θ(m)

kk′ = αkk′β
(m)
kk′ (1 6 k 6= k ′ 6 K , 1 6 m 6 M) and

γ
kk(m)
i ,j = ιkk

i ,j ρ
kk(m)
i ,j (1 6 k 6 K , 1 6 i , j 6 pk , 1 6 m 6 M).

The constraints for the first decomposition are αkk′ > 0,
αkk′ = αk′k and β(m)

kk′ = β
(m)
k′k (1 6 k 6= k ′ 6 K , 1 6 m 6 M),

The constraints for the second are ιkk
i ,j > 0, ιkk

i ,j = ιkk
j,i and

ρ
kk(m)
i ,j = ρ

kk(m)
j,i (16 k 6 K , 1 6 i 6= j 6 pk , 1 6 m 6 M) and ιkk

i ,i = 1
(i.e. γkk(m)

i ,i = ρ
kk(m)
i ,i ).



The Joint Estimation Method

By adding information of common structures into the model, we have
Ω(m)

kk′ = θ
(m)
kk′ Γ(m)

kk′ = αkk′β
(m)
kk′ Γ(m)

kk′ so that

Ω(m) =


θ

(m)
11 Γ(m)

11 θ
(m)
12 Γ(m)

12 · · · θ
(m)
1K Γ(m)

1K
θ

(m)
21 Γ(m)

21 θ
(m)
22 Γ(m)

22 · · · θ
(m)
2K Γ(m)

2K
...

... . . . ...
θ

(m)
K1 Γ(m)

K1 θ
(m)
K2 Γ(m)

K2 · · · θ
(m)
KK Γ(m)

KK



=


Γ(m)

11 α12β
(m)
12 Γ(m)

12 · · · α1Kβ
(m)
1K Γ(m)

1K
α21β

(m)
21 Γ(m)

21 Γ(m)
22 · · · α2Kβ

(m)
2K Γ(m)

2K
...

... . . . ...
αK1β

(m)
K1 Γ(m)

K1 αK2β
(m)
K2 Γ(m)

K2 · · · Γ(m)
KK





The Joint Estimation Method

Finally, our problem could be decomposed into M individual
optimization problems at the (t + 1)th iteration:

min
{Ω(m)

kk′ ,Γ
(m)
kk }

nm[trace(S(m)Ω(m))− log|Ω(m)|]

+λ1
∑

k 6=k′

∑
16i6pk
16j6pk′

|ωkk′(m)
i,j |

(
∑M

m=1

∑
16i6pk
16j6pk′

|ωkk′(m)
i,j

(t)
|)1/2

+λ2
∑K

k=1
∑

16i 6=j6pk

|γkk(m)
i,j |

(
∑M

m=1|γ
kk(m)
i,j

(t)
|)1/2

(1)

The solution to (1) could be efficiently solved using the weighted Glasso
algorithm by Friedman et al. (2008).



The Joint Estimation Method

Tuning parameters selection:
The tuning parameters λ1 and λ2 in (1) control the sparsity of the
estimator. For now, we select them using the Bayesian Information
Criterion (BIC), defined as:

BIC(λ1,λ2) =
M∑

m=1
{nm[trace(S(m)Ω̂(m)

λ1,λ2
)− log|Ω̂(m)

λ1,λ2
|] + df mlog(nm)},

df m = #{(i , j) : i < j , ω̂(m)
i ,j 6= 0}

Ω̂(m)
λ1,λ2

is the Ω̂(m) when we impose tuning parameters λ1 and λ2

We denote the joint estimation method for the two-level Gaussian
graphical models as JMGGM.



Data

The University of Texas M.D. Anderson Cancer Center
Total number of samples: n = 278;

number of classes: M = 2;
sample sizes: n1 = 56 (pCR) vs. n2 = 222 (RD) or n1 = 114 (ER-)
vs. n2 = 164 (ER+);

Total number of genes: p = 22283;
number of pathways: K = 1320;
number of genes in pathways: pk = 4 to 778;

Human Breast Cancer Gene Expression Data

Sample ID Class Pathway1 . . . Pathway1320
Gene1 . . . Gene54 . . . Gene1 . . . Gene16

1 pCR 13.18 . . . 11.48 . . . 10.24 . . . 9.77
...

...
...

...
...

...
...

...
...

114 pCR 12.87 . . . 9.36 . . . 9.43 . . . 9.19
115 RD 13.72 . . . 7.90 . . . 10.73 . . . 9.38

...
...

...
...

...
...

...
...

...
278 RD 13.18 . . . 8.47 . . . 10.20 . . . 9.74



Endpoints

Endpoint D: response to preoperative chemotherapy
pathological complete response (pCR) or residual invasive cancer
(RD)
pCR means no residual invasive cancer in the breast or lymph nodes
Research have shown that pCR is a strong indicator of long-term
cancer free survival for breast cancer patients (Hess et al., 2006;
Popovici et al., 2010)
# of pCR vs RD is very unbalanced (56:222)

Endpoint E: the clinical estrogen-receptor status as established by
immunohistochemistry.

ER- or ER+
ER– is one of the histologic characteristics that indicate more
chemotherapy-sensitive cancer (Hess et al., 2006)
# of ER- vs ER+ is relatively balanced (114:164)

pCR prediction is a moderately difficult problem, compared to
ER-status (Fan et al., 2009; Popovici et al., 2010; Cai et al., 2012)



Why to choose QDA-based analysis?

We assume different inverse covariance structure across
heterogeneous classes, so quadratic discriminant analysis (QDA) is
selected over LDA.

However, conventional QDA has been shown to have shortcomings
in high-dimensional settings.
Only a few research have applied sparse estimates of
covariance/precision matrices to QDA in high-dimensional settings.

1 Sun and Zhao (2015) applied a sparse version of QDA for
classification problems.

2 Pavlenko et al. (2012) and Le and Hastie (2014) applied the sparse
estimate of block-diagonal precision matrices to QDA, which assume
no pathway level network.



Application Steps

1 Divide the data into a training set (95% or 90%) and a testing set,
stratified by response to preoperative chemotherapy or ER status.

2 Use the training set to estimate the two-level precision matrix
under different λ1 levels (L1,L2,or L3), and plug in the estimation
to the QDA score formula to classify the testing set observations.

3 Calculate classification measurements, including ACC, MCC, TPR,
TNR, PPV, and NPV.

4 Repeat the process 100 times and get the mean of the 100
classfication measurement sets.



Revisit the Joint Estimation Method

min
{Ω(m)

kk′ ,Γ
(m)
kk }

nm[trace(S(m)Ω(m))− log|Ω(m)|]

+λ1
∑

k 6=k′

∑
16i6pk
16j6pk′

|ωkk′(m)
i,j |

(
∑M

m=1

∑
16i6pk
16j6pk′

|ωkk′(m)
i,j

(t)
|)1/2

+λ2
∑K

k=1
∑

16i 6=j6pk

|γkk(m)
i,j |

(
∑M

m=1|γ
kk(m)
i,j

(t)
|)1/2

(2)

Note: λ1 majorly controls the sparsity level of the higher-level network,
and choice of the optimal λ1 is related to sample size, so we tried
different levels of λ1 (L1<L2<L3).



Results Accuracy and Matthews Correlation Coefficient
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Matthews correlation coefficient

Prediction performance for ER status, in terms of ACC and MCC,
is generally better than that for response to preoperative
chemotherapy.
MCC is a balanced measure for unbalanced data.



Results pCR
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As λ1 increase, sparsity level increases in terms of the two-level
network, better for explanation.
TPR and PPV behave oppositely with different training set
percentages.
pCR is the minority class for the very unbalanced data.



Results ER-
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Negative predictive value

As λ1 increase, sparsity level increases a little in terms of the
two-level network.
TNR and NPV behave in the same direction with different training
set percentages, more training data is better.
ER- is the minority class for the relative balanced data.



Future Research

Unbalanced data: method and QDA
compare with other methods that have been developed for
high-dimensional QDA
Apply to TCGA dataset
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Questions?

THANKS!!
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